For our Chapter 9 Test, you should be able to state each of the following convergence / divergence tests, or theorems:
(a)-Convergence of a Geometric Series
(b)-nth Term Test for Divergence
(c)-The Integral Test
(d)-Convergence of p-Series
(e)-Direct Comparison Test
(f)-Limit Comparison Test
(g)-Alternating Series Test
(h)-Ratio Test
(i)-Root Test

1. Determine the convergence or divergence of the following sequences:
(a) $\left\{\frac{n^{3}}{3^{n}}\right\}$, (b) $\left\{\frac{3 n^{2}-n+4}{2 n^{2}+1}\right\}$, (c) $\left\{\frac{(n+1)!}{n!}\right\}$, and (d) $\left\{\frac{(-1)^{n}}{n!}\right\}$.

If the sequence converges, find its limit. If it diverges, so state and EXPLAIN. (Be careful with your notation, and show your steps clearly.)
(a) $\left\{\frac{n^{3}}{3^{n}}\right\}$
(b) $\left\{\frac{3 n^{2}-n+4}{2 n^{2}+1}\right\}$
(c) $\left\{\frac{(n+1)!}{n!}\right\}$
(d) $\left\{\frac{(-1)^{n}}{n!}\right\}$
2. (a) Find the sum of the series $\sum_{n=0}^{\infty} \frac{17}{3}\left(-\frac{8}{9}\right)^{n}$. (b) Use a graphing utility to find the indicated partial sum S_{n} and complete the table below. (c) Use a graphing utility to graph the first 6 terms of the sequence of partial sums. (Label each point.) (d) Graph the horizontal line that represents this the sum of the series and state its equation. (Be careful with your notation, and show your steps clearly. Round any approximations to the nearest thousandths place.)

n	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{5}$	$\mathbf{1 0}$	$\mathbf{2 0}$
S_{n}							

(d) Equation of Horizontal Line:
(a) $\sum_{n=0}^{\infty} \frac{17}{3}\left(-\frac{8}{9}\right)^{n}=$
3. (a) Find the sum of the series $\sum_{n=1}^{\infty} \frac{6}{n(n+3)}$. (b) Use a graphing utility to find the indicated partial sum S_{n} and complete the table below. (c) Use a graphing utility to graph the first 6 terms of the sequence of partial sums. (Label each point.) (d) Graph the horizontal line that represents this the sum of the series and state its equation. (Be careful with your notation, and show your steps clearly. Round any approximations to the nearest thousandths place.)

n	$\mathbf{1}$	5	$\mathbf{1 0}$	$\mathbf{2 0}$	50
S_{n}					

(d) Equation of Horizontal Line:
(a) $\sum_{n=1}^{\infty} \frac{6}{n(n+3)}=$
4. State the Integral Test. Use the Integral Test to determine the convergence or divergence of the series $\sum_{n=1}^{\infty} \frac{\arctan (n)}{n^{2}+1}$. Use a graphing utility to graph $f(x)$, and verify that this graph corresponds with your result from the Integral Test.
(Be careful with your notation, and show your steps clearly.)
(b) Let $f(x)=$
(c) three conditions for $f(x)$:

(a) TEST:
5. Use the Direct Comparison Test to determine the convergence or divergence of the series $\sum_{n=1}^{\infty} \frac{4^{n}}{3^{n}-1}$. Be sure to show that any conditions for the application of this test are met. (Be careful with your notation, and show your steps clearly.) State the Direct Comparison Test:

TEST:

6. Use the Limit Comparison Test to determine the convergence or divergence of the series $\sum_{n=1}^{\infty} \frac{n^{2}+10}{4 n^{5}+n^{3}}$. Be sure to show that any conditions for the application of this test are met. (Be careful with your notation, and show your steps clearly.) State the Limit Comparison Test:

TEST:
7. (a) Use the Alternating Series Test to prove the convergence of the series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{3 n+2}$. Be sure to show that any conditions for the application of this test are met. (Be careful with your notation, and show your steps clearly.)
State the Alternating Series Test:

7(a) TEST:

7(b) Does $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{3 n+2}$ converge absolutely, or conditionally? (Use the definition of absolute convergence and show your reasoning clearly.)
8. (a) Use the Alternating Series Remainder to determine the number of terms required to approximate the sum of $\sum_{n=0}^{\infty} \frac{(-1)^{n}}{2^{n} n!}$ with an error of less than 0.001.
(b) Use a graphing utility and your result from part (a) to write a finite sum that approximates the infinite sum, $\sum_{n=0}^{\infty} \frac{(-1)^{n}}{2^{n} n!}$, with an error of less than 0.001. (Hint: Write out your sum and show at least two steps as you compute this finite approximation.)
$\sum_{n=0}^{\infty} \frac{(-1)^{n}}{2^{n} n!} \approx$
9. (a) Use the Alternating Series Remainder to determine the number of terms required to approximate the sum of $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n 4^{n}}$ with an error of less than 0.001.
(b) Use a graphing utility and your result from part (a) to write a finite sum that approximates the infinite sum, $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n 4^{n}}$, with an error of less than 0.001. (Hint: Write out your sum and show at least two steps as you compute this finite approximation.)
$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n 4^{n}} \approx$
10. Use the Ratio Test to determine the convergence or divergence of the series $\sum_{n=1}^{\infty} \frac{n!}{n 3^{n}}$.

Be sure to show that any conditions for the application of this test are met.
(Be careful with your notation, and show your steps clearly.)
State the Ratio Test:
11. Use the Root Test to determine the convergence or divergence of the series $\sum_{n=1}^{\infty}\left(\frac{4 n}{5 n-3}\right)^{n}$. (Be careful with your notation, and show your steps clearly.)
State the Root Test:

TEST:
12. State the definition of the nth Taylor Polynomial for the function f with a center at c.
13. (a) Find the Taylor Polynomial of degree 3 for the function $f(x)=\sqrt{x}$ with a center at $c=4$. (b) Find the Taylor Polynomial of degree 4 for the function $f(x)=\ln (x)$ with a center at $c=2$. (Be careful with your notation, and show your steps clearly.)
(a) Taylor Polynomial of degree $3, P_{3}(x)=$
(b) Taylor Polynomial of degree $4, P_{4}(x)=$
14. (a) Find the Maclaurin polynomial of degree 4 for the function $f(x)=\frac{1}{1+x}$. (b) Use this polynomial from part (a) to approximate $f(0.1)$? (c) Use Taylor's Theorem and a graphing utility to obtain an upper bound for the error of the approximation. (Be careful with your notation, and show your steps clearly.)
(a) Maclaurin polynomial of degree $4, P_{4}(x)=$
(b) $f(0.1) \approx$
(c) upper bound for the error \approx
15. (a) Find the Maclaurin polynomial of degree 5 for the function $f(x)=\sin (x)$. (b) Use this polynomial from part (a) to approximate $\sin (0.1)$? (c) Use Taylor's Theorem and a graphing utility to obtain an upper bound for the error of the approximation. (Be careful with your notation, and show your steps clearly.)
(a) Maclaurin polynomial of degree $5, P_{5}(x)=$
(b) $\sin (0.1) \approx$
(c) upper bound for the error \approx
16. (a) Find the radius of convergence of the power series $\sum_{n=0}^{\infty} \frac{(x)^{n}}{2^{n}}$.
(b) Find the radius of convergence of the power series $\sum_{n=0}^{\infty} \frac{(x)^{n}}{n!}$.
(Be careful with your notation, and show your steps clearly.)
(a) radius of convergence of the power series $\sum_{n=0}^{\infty} \frac{(x)^{n}}{2^{n}}$ is $R=$
(b) radius of convergence of the power series $\sum_{n=0}^{\infty} \frac{(x)^{n}}{n!}$ is $R=$
17. Find the interval of convergence of the power series $\sum_{n=1}^{\infty} \frac{(-1)^{n}(x+1)^{n}}{2^{n}}$. When checking for convergence at the endpoints of the interval, state the series you are testing, state the name of your convergence test, and state your result. (Be careful with your notation, and show your steps clearly.)
18. Find the interval of convergence of the power series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}(x-5)^{n}}{n 5^{n}}$. When checking for convergence at the endpoints of the interval, state the series you are testing, state the name of your convergence test, and state your result. (Be careful with your notation, and show your steps clearly.)
19. Given function defined by the power series $f(x)=\sum_{n=1}^{\infty} \frac{(x)^{n}}{n}$, find the following series: (a) $\int f(x) d x$ and (b) $f^{\prime}(x)$. (Be careful with your notation, and show your steps clearly.)
(a) Power series for $\int f(x) d x=$
(b) Power series for $f^{\prime}(x)=$
20. Given function defined by the power series $\sum_{n=0}^{\infty} \frac{(x)^{n}}{3^{n}}$, find the following series: (a) $\int f(x) d x$ and (b) $f^{\prime}(x)$. (Be careful with your notation, and show your steps clearly.)
(a) Power series for $\int f(x) d x=$
(b) Power series for $f^{\prime}(x)=$
21. (a) Find a power series for the function $f(x)=\frac{1}{2 x-5}$, centered at $c=-3$. (b) Find the interval of convergence of this power series. (Be careful with your notation, and show your steps clearly. Hint: Do not check the endpoints of the interval of convergence.)
(a) Power series for $\frac{1}{2 x-5}=$
(b) Interval of convergence:
22. (a) Find a power series for the function $f(x)=\frac{4}{3 x+2}$, centered at $c=3$. (b) Find the interval of convergence of this power series. (Be careful with your notation, and show your steps clearly. Hint: Do not check the endpoints of the interval of convergence.)
(a) Power series for $\frac{4}{3 x+2}=$

